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ABSTRACT "

Let A be a finitely connected closed point set in the complex plane

with a piecewise smooth boundary a. The approximation of functions analytic

on a by rational functions determined by interpolation or least squares
approximation at preselected nodes is discussed. Attention is focussed on

simple methods for selecting an appropriate rational space and obtaining a

fairly well-conditioned rational basis. Applications include the

determination of conformal mappings. Numerical examples illustrate the

approximation method.

AMS (MOS) Subject Classifications: 65E05, 65D05, 30C30

Key Words: rational approximation, interpolation, least squares

approximation, conformal mapping, analytic continuation.

Work Unit Number 3 - Numerical Analysis and Scientific Computing

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



SIGNIFICANCE AND EXPLANATION

Complex rational approximation by interpolation has a long history in the

theory of approximation. The following numerical questions, however, do not

appear to have received much attention:

1) Given a region on which an analytic function shall be approximated by

rational functions, and given a set of interpolation points on the

boundary of this region, how should one numerically determine a suitable

rational space?

2) How does a well-conditioned basis of this rational space look?

3) If one is free to select interpolation points on the boundary, how should

they be chosen?

4) Can the selection of the rational space be simplified if one allows least

squares approximation instead of interpolation?

The present paper discusses these questions.
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ON COMPLEX RATIONAL APPROXIMATION
BY INTERPOLATION AT PRESELECTED NODES

Lothar Reichel

1. Introduction O

Let n be a closed region of finite connectivity in the complex plane,
and assume that the boundary ail is piecewise smooth. Let f(z) be a

function analytic on 9 and assume that f(z) iq explicitly known on an or

on a finite point set on an. The purpose of the present paper is to describe

a numerical method for determining a rational approximant r(z) to f(z) on

Q. The method consists of the following steps

1) select finitely many nodes zk in the point set of a on which f(z)

is known.

2) choose a rational space from which the approximant r(z) is to be

selected. The choice will depend on the distribution of nodes zk.

3) select a well-conditioned basis of the rational space.

4) compute r(z) by interpolation or least squares approximation at the

nodes zk.

Complex approximation by interpolation has a long history in the theory

of approximation. Our scheme differs from previously described methods, see

[1], 131, 171, 191, in that we use the selection of nodes as starting point.

This allows us to treat cases when f(z) is known on a finite point set only,

and it also allows us to let the allocation of nodes depend on properties of ,

f(z). In turn we discuss necessary and sufficient conditions on the selection

of rational space (section 2), a simple method for choosing rational space

(section 3), the selection of nodes (section 4), choice of rational basis

(section 5), and approximation on multiply connected regions (section 6). We

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



present applications to conformal mapping, and indicate generalizations to the

numerical solution of Dirichlet problems for the Laplace equation on multiply

connected regions (section 7). Comments on approximation by the discrete

least squares method conclude the paper (section 8).
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2. Convergence results

Throughout this paper {zk,m k-1 denotes a set of interpolation or least

n- I
squares nodes on 30. The set {w denotes a set of not necessarily

kn k=i

distinct poles in f , the complement of a with respect to the extendedC

complex plane, and defines the rational space

n-1

(2.1) Qn := span{l,(z-wln) (Z-w 1,n (z-w 2,n IF (zkwk,n) I

The approximation error we measure in the maximum norm

IfN max If(z)l

The next definitions 
follow [9].

Definitions.

Let the real valued function a be positive a.e. on a Jordan arc y,

and assume f a(z)ldzt = 1. The direction of integration defines an
Y

orientation on y, and we let z be the first point of y. The mapping

F : y + [0,1], F(C) := a()idcI defined by integration along in the

positive direction has an inverse a.e. - For a sequence of sets (4k n k

n - 1,2,3... of points C on y, let for constants 0 < di < d2 < 1,
kn1 2

n
Nn(dl,d 2 ) denote the number of points of C Iknik1 on the subarc of Y with

end points P-(d) and F-7(d2 ). If lim Nn(di d2 ) d2 -

ntao

Vdj1 d2, 0 < di < d 2 < 1, then the point sets are said to be uniformly

distributed on I with respect to a as n + -. A set (C of points

C on y is said to be equidistributed with respect to Y if
in-1 -1 1

Fn - - k - 2(I)n. Sequences of equidistributed sets(k,n) k-l,n) n'

are uniformly distributed. The definitions carry over to Jordan curves if we

let C be a point on the curve, and identify the curve with an arc with C

both as first and last point.

-3-



* p
The following theorem covers approximation on bounded simply connected

regions. Extensions are provided in the remark below.

Theorem 2.1

Let r and r be piecewise smooth Jordan curves, r
nodes poles poles

containing r in its interior, and rP n r P. Let S denote
nodes poles nodes

the open region between r and rP . Let U(z) solve th. Mirichlet
nodes poles*

problem

U(z) is harmonic in S as a function of
x,y, z , x +iy, x,y real

(2.2) U(z) is continuous on S u rp r o
poles nodes

U(z) = 1 on r
nodes

11(z) =0 on rpoepoles

Let denote the outward normal derivative with respect to S. Then

au(z) au(z)(2.3) c := f - dzI = -f n
roe rpoe .

Let f(z) be a function analytic on and interior to P {z, U(z) = il},
n

where '1 is a constant 0 < M < 1. Let [z k,nk=1, n = 1,2,3,... be a

sequence of points sets on r uniformly distributed with respect to
nodes

-1 au n-1
c as n + ,, and let n 2,3,4,... be a sequence of point

Tn (w~k,n'-
-1 ausets on r e uniformly distributed with respect to -c T. Let the sets

poles
{W I define a sequence of rational spaces Qn' -- 2,3,4... , see
k,n k=1

(2.1). Then rn e Q n, uniquely determined by interpolating f(z) at points
n

in the set {z Ink=l, converges to f(z) on and interior to r , for all
k,n 112'

220 C. 112  < )i I as n + . ,

The rate of convergence is given by

-27t (j i-I
(2.3) lim max If(z) - r z)I1 /n  e •

n- zer
U 2

-4-



. }n n-1
If the sequences zk(,n kl (WkM~k=1 are uniformly distributed with respect p

to another density function such that

(2.4a) Vn(Z) := 1k-1nlzzzknl -
i - lnnlz-W I -_*1

n n ks1z -11 j

(2.4b) 1rm V (z) : V(z) is nonconstant on rode I
n.

then there is a function g(z) analytic on and interior to r nodes' such

that rn (z) e Q n rn (zk) = f(z k,n k 1(1)n, and Ig-rn I - 0 as

n + .

Proof. Equations (2.2) have a unique solution U(z) with > 0 a.e. one 3n
rnd and < 0 a.e. on r e. Green's formula yields (2.3). By

*nodes 3n poles'

studying potentials (2.4a) Walsh has established the connection between the
A "'

level curves of U and the rate of convergence, see the proof of Theorem 9 in

Walsh [101, ch. 8. If the limit potential V(z) in (2.4) is nonconstant on

rnodes then there are points c1 S Fe d e @ exterior of r such1oe'I nds 2 nodes

that V(CI) > V(C.2). Let g(z) :- (z-C 2)- and let rn e n interpolate

g(z) at z - Zkn, k - I(i)n. Then by [10], ch. 8,

n Cl-zn n-1 r.2-Wn .I Znk n- 2'nk
(l) -rn( 1) -1 * 11

n k-1 2-Z nk kni Cl-Wnk

and

Ig( ) - rn (C 1)1 - n(V(1 ) 
-V(2) "'"

Sic V(C )-V( (C V((
Since V n(C I Vn(r2 + VI - V(C2) 8: 6 > 0, n +

n8Ig( 1 ) - rn (ClI )I e +', n +

which shows divergence and completes the proof.

6 ..
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Remark 2.1

The distribution of nodes and poles described in the theorem is invariant

under conformal mapping, see [10], section 9.12: Let * map S conformally

and 1 to 1 onto 4(S) and be continuous and 1 to 1 on
n

s r ro . If the node sets {z n} are uniformly distributed on
nodes poles kn k-i

-1 au
r with respect to c - as n + W, where U solves (2.2), then the
nodes w3i

node sets {*(zkn)}ki are uniformly distributed on o(rnodes) with respect

to c aUn as n + O, where U solves the Dirichlet problem analogous to

(2.2) on the mapped region o(S u Fnodes u r e), and c=

f ne n (z)Idz l. Similarly, if {w nn-i are uniformly distributed on
ornodes)an[kk=

-1 3U n-1
ro with respect to -c as n + , then the sets {O(Wkn)}k 1 are
polesw nk k=

uniformly distributed on *(rl) with respect to -c- as n + c.
poles a n

Especially theorem 2.1 holds also if F is exterior to roe, or if
nodes poles'

r F is a piecewise smooth Jordan arc.
nodes

Remark 2.2

The configuration of curves in theorem 2.1, may consist of several

* mutually exterior curve pairs {r nodes' rpoles), and the allocation of nodes

and poles on each pair can be made independent of the allocation on the other

pairs. This follows from the fact that for each curve pair a solution of

(2.2) if extended to the exterior of the curve pair would be constant there.

Its normal derivative on any other curve would vanish. This remark follows

again from [10], ch. 8, theorem 9 and its proof, which covers a more general

situation than theorem 2.1 above.

-6-
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we close this section by indicating how theorem 2.1 can be used for

computing analytic continuations. Let f(z) be known on a curve r In
nodes*

many physical problems one may know that f(z) is analytic in a specific

simply connected region B containing rd in its interior. Then let

r be he boundary curve of B. The rational approximants r computed
poles n

as described in the theorem converge to f(z) in the interior of r aspoles

n + 0. The next section discusses how the nodes Zkn and poles wkn can be

allocated without explicitly solving the Dirichlet problem (2.2).

-7-



3. Selection of rational space

We discuss approximation of analytic functions f(z) on simply connected

regions. Our starting point is the assumption that a density function a for

nthe interpolation nodes (z I on r is known, and that the nodes
k,n k=i nodes

are equidistributed w.r.t. a. We assume a > 0 a.e. on r If a set
nodes'

n
of nodes {znI is given on r then we construct a piecewise

k,n k=1 nodes

linear density function such that the nodes are equidistributed w.r.t. the

constructed density function, which we also denote by 0. A set of poles

{w n-1 defining the space Q are obtained by solving (2.2) as an initialk,n k=1 n

value problem: U and !- = a are known on rodes , and we want to

determine other level curves of U, on one of which we -llocate the poles

wk ,n

An initial value problem

Assume that r is a smooth Jordan curve. If r has corners
nodes nodes

we round them for the present computations. If r is an arc, we replace
nodes 1Wv.

the arc by a smooth circumscribing curve, or we could proceed as illustrated

in section 8. First determine a set of n - 1 points n-1 equi-
k,n k-i

distributed w.r.t. a. Let W denote the conjugate harmonic function to U

such that W(C,) = 0. The conformal mapping

1,n

z + z = O(z) := exp(U(z) + iw(z))

maps S, see theorem 2.1 for a definition, conformally on an annulus with

**( ) = exp(I + 2vi L-), k = I)n-I. Now assume that S is exterior tok,n n

rnodes. By the conformal invariance noted in remark 2.1, the poles

w nl should be allocated so that the points *(w ), k 1(1)n-1, arekn k=i kn
-I

equidistant on a circle concentric with the unit circle. Let * be the

t+is
inverse of *, and let z e , s,t e R. Then

-8 -
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A _ -(e t+is 0

(3.1) 1+271i k-i

k,n n1( 1(1)n-1

For a fixed t to, the curve z z(t0,s), 0 ( s < 2w, is a level curve •

of U. We determine such level curves by solving an initial value problem for

the Cauchy-Riemann equations for z =z(t,s),

(3.3a) am -i a "
at as

Initial value problems for (3.3a) are ill-posed, but a low accuracy solution

suffices for our purpose, and generally we integrate few steps only. The ill-

posedness has noL caused any difficulty in the present application. On
k-I

er (3.1) yields, with s 2w - k - 1(1)n,
nodes kc n

(3.4) amsz ) ' k+1,n- k-1,n.5- (I'sk 2A9

Substituting (3.4) into (3.3a), integrating in the positive t-direction with

Eulers method with At - As, and denoting the computed approximation of

z(1 + At,sk) by Vkg yields the scheme

(3.5a) Wk,n := C k,n - I (Ck+,n - Ck.n)I k = 1(1)n-1, Cn C=  C C

The wk,n lie on an approximate level curve of U, and wkn lies

approximately on the same stream line as 4 k,n Hence,the Wk,n are

approximately equlidistributed w.r.t, -- on a level curve of U.;n :

Ex. 3.1. Let

rodes :. (z(t) z= x(t) + iy(t), x(t) : 1.75ocos(t)

(3.6) + 2.625*cos(2t) - 2.625, y(t) : 3.0625*sin(t-0.2)

+ 1.2 2 5*sin(2t) - 0.6125.sin(4t) + 0.875, 0 < t < 2w)

Allocate 32 points equidistantly w.r.t. arc length on ro , and
k,33 nodes

integrate according to (3.5a). Figure 3.1 is obtained.

-9--AO



t Fnode s  e

Figure 3. 1

The curve (3.6) has been used by Meiss-Markowitz [5] in a quite different

example.

The integration (3.5a) can be repeated by first letting rk n
kn k,n

k = 1(I)n-1, and then performing (3.5a). The integration should be repeated

until the computed level curve intersects itself, and the Wk,n should be

allocated on the last non-intersecting or near-non-intersecting computed level

curve. We motivate this by considering the case where r is the unit
nodes

circle. Analogous results can be established for more general curves

* r
nodes*

Ex. 3.2. Let r = {z IZi 1), and let the interpolation nodes be
nodes

equidistant on r S is exterior to ro , and level curves of U
nodes nodes'



are circles Izi - r > I. The poles wk,n  will lie equidistantly on a circle

IzI - r > 1, and
0

U(z) 1 - n z • (lnIz 0I)
- 1

At any fixed point z, 1 < 1z1 < rO, we have that U(z) increases with

z01. Hence, approximation of analytic functions on the unit disk by

interpolation at the roots of unity is by theorem 2.1, best done by the family

of rational functions which correspond to r0 - -, i.e. polynomials.

When approximation of functions on the region exterior to r nodes' is

considered, then S is in the interior of r nodes and (3.3a) is replaced by
a z az

(3.3b) 3t 32

The corresponding difference equation is

i
(3.5b) Wkn k,n + ( k+l,n - k-l,n) k 1(I)n-1, C n C1 CO :  n-

Method (3.5) as well as other integration methods for (3.3) have

been studied in [6] for the case when the function to be continued

analytically is analytic in a simply connected region. The analysis carries

without difficulty over to the present situation.

We conclude this section with some computed examples. All computations

in this paper were carried out on a VAX/780 in double precision arithmetic,

i.e. with 12 significant digits.

Ex. 3.3. Approximate f(z) : /z-a on and interior to the curve rnodes of

example 3.1., with a := -2.6325 + i 1.425, see figure 3.2

-11-
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S
Figure 3.2

The branch of the square root is chosen to make f(z) single valued and

analytic in the plane cut along z := a + t, t 4 0. For n - 1 + 321,

I = I(1)4, we allocate n interplation nodes zk, n  equidistantly w.r.t. arc

length on rodes. Q3 2  is defined by the 32 poles wJ,33 on figure 3.1.

Q t = 1,2,3 are defined by letting wmod 321+1,33 j
33+321' J,33+32t : ~ o 2+,3j

Let rn(z) denote the element in Qn such that rn(Zkn) = f(k,nl,

k I11)n. In figure 3.3 the computed errors are marked with dots.

We note, in passing, that the nodes of course do not have to be allocated

exactly equidistantly w.r.t. arc lengths. Nodes could be marked sufficiently

accurately with a light pen, and also equations (3.3a,b) are sufficiently

simple to allow an approximate graphic solution.

-12-
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30 40 50 0 7 0 0 10 10 10

Figure 3.3

Ex. 3.4. In theory, it is also possible to approximate the function f(z) of

F n deoeasto n eerpisexample 3.3 by polynomials. let ( denot ak seIf nFjr pit

*for r ds. For their definition, see 13) or (9). Figure 3.4 shows the

points (z ) 2 marked with crosses on r .Interpolation of f(z)
k,120 k-1 nodes*

in n points defines a polynomial Pnz of degree < n, and the polynomial

* ~sequence (p W) converges maximally to f(z), i~. P~ 1  converges

*exponentially to f(z), n + and there is no polynomial sequence with a -

higher exponential rate of convergence to f(z).

-13-
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I1

_2

Figure 3.4

Computation of pn for some n gave the following table 2

n I f-pnIU.•

40 0.60-L

80 0.42

120 0.42

160 impossible to evaluate.

A slow rate of convergence is combined with difficulties of accurately

evaluating pn(z) for large n. A Lagrange polynomial basis was used, and

the Fejer points zn were determined with 4 significant digits.

Ex. 3.5. Approximate f(z) := z v(z-z llz-z2) on and exterior to r

4I defined by (3.6), where z - 4-2I, z2  i, see figure 3.5.

-14-
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+0 0
r~t r

• +0

rnodes rnde

Figure 3.5 Figure 3.6

The branch of the square root is chosen so that zf(z) is analytic in

the finite plane cut between zs and Z2. We wish to approximate f(z) by

interpolation in 33 nodes equidistant w.r.t. arc length. Figure 3.6 shows 32 a
points 3 allocated equidistantly w.r.t. arc length on r odes' and also

J,33 nds

32 poles wj,3 3  obtained by applyinq (3.5b) once. r33  denotes the rational

interpolant to f(z) in Q3 3 1 see below.

Allocate 65 interpolation nodes on r equidistantly w.r.t. arc
nodes

length. Let Vj, 6 5 :- wj+ 3 2 ,6 5 :- wj, 331  - 1(1)32. This defines Q6 5 "

Let r6 5 be the interpolant to f(z) in Q6 5 , We obtain

n IF-r I r
n odes

-2
33 1.10

65 1o10-4

-15-
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4. Selection of nodes

If f(z), the function to approximate, is known on a discrete point set

only, there may be no choice to make. In this section we assume that f(z)

is known everywhere on roe. If no knowledge of the location of the
nodes

singularities of f(z) is available, we want an allocation of nodes such that

the orthogonal distance from a point of rnodes to level curves

(z : u(z)) = p1, p > 0, is approximately constant for all points of rnodes *

Then the rate of convergence will depend on the distance from rnodes to a

nnodessingularity of f(z) closest to r nodes . This is, to a first approximation,

achieved by allocating the nodes equidistantly w.r.t. arc length.

Knowledge about the location of the singularities of f(z) can be used

by allocating more nodes on parts of rnode s close to a singularity. The

level curves of U(z) will be close to r where the node density is
nodes

highest. Example 7.2 provides an illustration.

-16-
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S. Rational basis

The basis implicit in the definition (2.1) of Q. is generally ill-

conditioned. If the nodes zk,n and poles Wk,n are near-equidistributed

with respect to Ic -I nn respectively, then the

U on odes  and pol s,

n-1 z-z n-1 z -W
k~n _kn k.n, ~-,ibasis 0 (Z) ( 1, £Z) := f - fH it n()k';i

k-1 J,n- k,n k-i z-Wk,n
kCj

fairly well-conditioned. A condition number of a basis we define following
n-i

Gautschi [ ], with the map F : Be  Q : a * a I ,(), where a -
n n k=0 kk

(a0 ,al,...,an-l). Equip 7n with the maximum norm lal : maxia I and

Qn with the norm I Ir  • The induced operator norms are
nodes

n-i n-i
IF I max I I a k (z)I - max It () ,

I 0 k nodes zer k-O k
-- nodes

IF- 11 max lal ( 2
nn-1

a kIk z)l I
0 nodes

and the condition number of the basis 1 (2) is

n-1

cond F := IP IF I 2 max ) Iklz) l 2n * max Itk(z)l ,ze nnodes k-0 0(k4 n- I nodes
nodes

Assuming that the Zk, wk are uniformly distributed with respect to

-1 3U
I I~I, we have for k 0,

n-1

*nl . a)l - (n-1)(n ( Y nlz-z J,n - lz k,n-z J,nl )

Ji'k
n-1

n-1 - lnlz-w~ ,n1 - lnlk,n -Wj,n.11))

I-17
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-r lnjz-CIc -1n (c I0 IdzI I + -3

poles polesdi I

0 (lIn~n))

for any fixed z e rd z z z as n + Hence, it Wz1 0(n), k=
noe' J,n k

0(1)n-1, for any fixed z e8 ods n + m This shovs that the basis

n-I
(I iJ0 is reasonably veil-conditioned.



6. Multiply connected regions

We consider the approximation of a function f(z) on an exterior doubly

connected region. Generalization to more complicated regions are immediate.

Let f(z) be analytic on and exterior to the piecewise smooth curves y and

Y 2 . Y i bounds the region nil, see figure 6.1.

Y2  Y"

Figure 6.1

We wish to approximate f(z) by a rational function which interpolates

f(z) in nodes on Y and y2 . During the allocation of poles we can regard

the problem as if it were composed of the two simpler subproblems:

Approximate fi(z), analytic on and exterior to Yi , i - 1,2, and

(1) n
f2() 0 0. Consider the case i - 1. Assae n nodes fz k )}=I and a

density function a are known on y The method of section 3, yields

poles wk  k = I(I)n-I, in n 1, and this defines the space

(6.1) (1) :- span(1, (z-w 1 I,..., (z-w 1)

k-1

and basis

() 1 ) (1)
(1) n-i z-z. n zn k  -w 

(1)(z) H M(1) (1) (1) k !

jil z k  w j. z-
(6.2) jk j j

(1)( ) : 1 .
L (z) : I
0SL

-19-SL



(2)
Repeat for problem i = 2. Nodes zk  k 1...m are assumed to be known on

Y 2" Since f2(c) = 0, the rational space we are to construct does not have
(2)

to contain constants. We can identify the nodes zk with the points Ck s
(2)

of section 3 and obtain poles , k = 1,...,m, defining the space

m 1 k

kw
and basis (2) (2) (2)

m ZZ. m z w

X2(z) := j = 1(1)m
k j=i (2) -Z(2) j=(2)

j^ k k

(1) (2)
To solve the original problems, we select the function r e Q 0 Q

(1) n (2) mwhich interpolates f(z) in {z I U [z Convergence results
k k=I k k=1.

analogous to theorem 2.1 can be shown, see remark 2.2, provided that both

(1) (2) (2)
n,m + c. The basis fI,..,ni' 1 I is fairly well-

conditioned on yi t Y 2, under the assumption that 091I k =1(I)n-1,

(2)
and It I , k = i(1)m are small. The method of proof is similar to that

k yi

used in section 5. The assumption is reasonable due to the relation between

nodes and poles.

/( 5 3 -1 / i i -I
Ex. 6.1. Let f(z) = (z+ )(z+ -) (z+2) + (z-2- 1)(z-2+ -) • (z-2)

22 2 2

where the branches are selected so that the first term is analytic in the

5 3
complex plane cut along the line segment between z = d and z J 2' and

the second term is analytic in the plane cut along the line segment between

i i
z = 2 + - and z = 2 - -. Approximate f(z) in the region exterior to both

2 2

curves

2
T1 = (z = 2 + cos(t) + isin(t)(2 + cos(t)) , 0 4 : < 271

2
Y (z = -2 - sin(t)(2 + cos(t)) + i-cos(t), 0 4 t < 2 r

Figure 6.1 shows yI Y 2  and the branch points of f(z) marked with crosses

inside y and Y2"

-20-
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(2)2 - .J

zS

Figure 6.2"

We wish to interpolate f(z) in 31 nodes z (1 equidistant w.r.t. arc

kS

length on y,, and in 30 nodes (2) equidistant w.r.t, arc length on Y2

(I)l

k6 I

~~~~~~~~~Figure 6.2 sos3 ons qiitn ~~,aclnt n7 , te

(2) (2) (1) (2)-

30 points Zk Ck on 2 and the poles w and w obtained by -"

applying (3.5b) twice for each curve y Denote the interpolating rational

approximant by r(z). Then

-7 -7If- r 4. 10 , If- rl i4-10 .
Y1

2
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7. Applications to Dirichlet problems and conformal mapping

The close connection between rational approximation and approximation by

rational harmonics, see [11], suggests applications to the numerical solution

of Dirichlet problems for the Laplace equation on simply and multiply

connected regions. We discuss in some detail the special Dirichlet problems

whose solution yields a conformal mapping from a simply connected region to

Iw ) I or to 1w] I 1.

Let 9 he simply connected with boundary asi = rnode s and complemert

c" .Allocate nodes zj, j = 1(i)2n-1, on rnodes for some n. Determine

n-1 points * on r , such that the distribution functions for z.

and . agree. Allocate n-1 poles w. in Q by application of (3.5a) orj j c

(3.5b). This defines the 2n-I - dimensional space of harmonic functions

(7.1) span{L (z), Re(t (z)), Im(k (z)),...,Re( n  (z)),Im(X (z))}
0 1 1 n-i n-i

where

20 (z) := 1
0

(7.2) n-1 z-z 2 k n-1 Z2k -Wk
.(z) : 1 , j = I(1)n-1

k=1 z2j-z2k k=1 z-wt

k#j

An approximate solution to

Au I 0 in Q

u =q on

is obtained by solving

n-i

(7.3) Re( I a E (z )) = g(z.) , j = 1(I)2n-I
k= 0  k k j

for the a. . This system may not always be uniquely solvable, which is why,

in the computed examples below, we solved (7.3) by singular value

-22-
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J

decomposition of the matrix. In none of the computed examples the matrix was

near-singular.

The special choice •

(7.4) g(z) = -lnlzl

leads to approximate conformal mappings for 9 provided that 0 a fl.

S

Ex. 7.1. Let n be the bounded region of figure 3.5. Compute a conformal

mapping 9 + lvi w 1, such that 0(0) - 0. Allocate 129 nodes z3 on

3 equidistantly w.r.t. arc length. Use the poles (w 32 shown in figure

3.1, and define wj+3 2 := j, - I(1)32. Thus we obtain a basis (7.2) for

n 65, and solve (7.3) with g(z) defined by (7.4). This yields

64
65 (z) :=z exp( I a k Lk(z))

k=0

which approximates Figure 7.1 shows f6 5 (30) and a reference circle of

radius 1.1. The error I4 65(z)j - 11 = 7.10 is well below the65n
resolution of the picture.

Figure 7.1 0-

-

-23-
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Ex. 7.2. Let Q be the exterior of the curve in figure 7.2. Compute a

conformal mapping Q + l > 1, such that '(o) =. Allocate 65 nodes

zj on M, equidistantly w.r.t. arc length, and use the 32 poles w, of

figure 3.6. Solving (7.3), with q defined by (7.4), one obtains the

approximate map
n-1

(7.5) ( z exp( X a (z))
n k=O k k

for n = 33. S

z ( ) . (c

z(-)

2

Figure 7.2 Figure 7.3

Figure 7.3 shows 'P (Q) and a reference circle of radius 1.1.
33

* I' 3 3 (z)I - IQ = 3.10 2 . * 33(3Q) intersects itself at the blob, which is

roughly the image of the part of aQ, which lies strictly interior to the

convex hull of 0. This suggests that in order to achieve hiqher accuracy

* more nodes should be allocated between the points z(-) and z(-) in figure
2 2

-24-
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QI

7.1. The allocation of nodes to be described next is simplified by the fact

. d(arc lenth)
that the parameter t in (3.6) satisfies M th constant,

0 4 t < 2W. (Figure 2.2 shows 32 points on M equidistant w.r.t. t.) This

simplifies the determination of the nodes and poles to be used, but is not

essential for the discussion, why we chose not to use this fact in the first

part of this example. Figue 7.1 shows 32 points marked with crosses on r

and allocated equidistantly with respect to the boundary parameter t, see

(3.6). In figure 7.4 we have allocated 11 points equidistantly with
J

respect to t for 0 4 t < 2, 44 points equi-distantly with respect I

to t for W 4 t < 3--, and 11 points equidistantly with respect to

t, 3w-4 t < 2w. By (3.5b), we obtain 66 poles wj, and finally we allocate
2

t 133 nodes on r having the same distribution as the . This yields the

mapping 67 (z). Figure 7.5 shows 67 (r) and a circumscribed concentric

reference circle. |*I* 6 7 (z)I - = 3-10-3

we

6.1

6 7

Figure 7.4 Figure 7.5 9

-25-
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The abbreviation error is near the resolution of the plotter. Double the

number of poles in figure 7.4 by wj+66  w,, j = 1(1)66. This yields

4 x 66 + 1 = 265 harmonic basis function, which we determine by interpolation

at 265 points zj, which we allocated with the same density function as we
-6

used for *67" This gives *133 (z) and II 1 3 3 (z)i - I1 = 6.10 . Figure

7.6 shows (Q) and a reference circle of radius 1.1.

I S"

Figure 7.6

L
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8. Least squares approximation

we consider an example, where the distribution of nodes and poles does

not agree very well with the conditions of theorem 2.1, and point out that in S

such cases least squares approximation may give higher accuracy than inter-

polation.

Approximate f(z) :- 471 on 30 - [-5i,Si], by using function values

m m

of the square root is chosen to make f(z) analytic in the finite plane cut

on the real axis from 1 to - and from -1 to -. The poles we allocate

in a simple manner: for n even, let for some s 0

Swkn W- (1 2k-2 _ 5) + a
2kin n-2-

n-2

nkl~ n-
::z,~ k-2k - 1(1) 2
:im~n. (10-225) - •

First, consider the selection of s. For s large the distribution of

nodes zk,m and poles Vk,n does not agree at all with the distribution

suggested in theorem 2.1. In fact, for s - , i.e. polynomial

approximation, approximation by interpolation diverges. This follows from the

similarities of our approximation problem and the classical example of Runge,

see [2]. On the other hand, for a > 0 small the rate of convergence becomes

unnecessarily slow.

Ex. 8.1. Let n = m + I and compute the rational approximant r (Z) to

f(z) for s - 1,2,3.

-27- *1



100 .... . - r r4 ...10

i0-.

10 - 3  +

10-4- s =2:

s =3: * "0
10- 5  s .3:

10-6

10 so 30 40 00 0 70 80

Figure 8. 1

Only points with markers in figure 6.1 correspond to computed approximation

errors.

Example 8.1 shows that the selection of s is of some importance, c.f.

also example 3.2. When it is difficult to determine an appropriate allocation

of poles, a crude determination of poles combined with discrete least squares

approximation at the nodes zk,m  can be a good strategy. For a justification

when the poles all are at , see [a]. Approximation by rationals with a

different but fixed distribution of poles can be treated similarly as in

(8]. Given m nodes zk,, and a distribution of poles wk,n, one generally t0

does not know a priori how to select the ratio m/n. One has to select

several values of n and select the best of the computed approximants, see

[8]. The difficulties in choosing m/n are illustrated in the next example.

Ex. 8.2. Consider the same approximation problem as in example 8.1 with

s " 2, but let = 0.9. For m 25, 51, 25, we let n be the even

-28-



integer closest to 0.9m. 7be "+" in figure 8.2 show the approximation

error. The dote correspond to interpolation n -1- and are the same as in

figure 9.1.

100 1- r . .-. -

10-1

10
- 2

1°-3 .

I0 - 4  4..

10-6 00.-

n6 so 40 so sos

m 

po

Figure 8.2

U•
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